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This paper establishes that the rational product approximation operator is
continuous. Under an additional restriction, this operator satisfies a local Lipschitz
condition.

1. INTRODUCTION

A number of recent papers [2, 3, 6-8, 12, 13] have considered extensions
of the concept of product approximation. In this paper, rational product
approximation is considered. In particular, this paper is the rational
companion to a recent paper [7] in which continuity questions for linear
product approximation were investigated. A brief description of rational
product approximation and the rational product approximation operator
follows.

Designate by C the set of all parameters consisting of the zero vector of
En+m+l and all vectors

satisfying

0) at least one i a, I > 0,

(ii) peA, x) = ao+ a1x + ... + anxn and Q(B, x) = 1 + b1x + ..,
~ bmx'" have no common factors, and

(iii) Q(B, x) > 0 on I = [-1,1].

Then R(n, m) is defined to be the set of all rational functions R(C, x) =
peA, x)/Q(B, x) with coefficient vectors C = (A; B) E C.

Let D = I x J = [-1,1] x [-1,1]. If FE C(D), then for each y EJ
define F y E CCl) by Fix) = F(x. y). Let

R(Cp(Y). -) = P(Ap(Y), ')/Q(Bp(y), '),

CF(y) = (aoP(y), .. " anP(y); b1P(y), ... , bmF(y)) E C
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be the best approximation to F y from R(n, m) in the sense of the uniform
norm II '111 on I. If each a/(y) and b/(y) is continuous on J, then let

r,

Tr,a/(y) = I af~ylc
lc~O

be the best approximation to a/O by polynomials of degree less than or
equal to ri in the sense of the uniform norm II . IIJ on J, and let

S,

TsJb/(y) = I bflc yk
lc~O

be the best uniform approximation to b/(y) on J by polynomials of degree
less than or equal to Sj • Since Q(BF(y), x) > 0 on D, for sufficiently large Sj ,

m

I + I TsJb/(y) x' > 0
j~l

on D. In this case,

(1.2)

is defined to be the rational product approximation to F on D. The rational
product approximation operator is then defined for FE C(D) by

(!JltF)(x, y) = R(F, x, y), (x, y) ED,

where R(F, " -) is the rational product approximation (1.2) to F on D. We
note that [l/{ is a mapping of a subset of C(D) into an appropriate class of
rational functions (depending on the integers n, m, {ri}~~O' and {S'};:l)
contained in C(D).

The lack of unicity for best approximations in several variables has posed
difficulties in computation and in establishing results corresponding to
classical theory of one dimensional approximation. Because of this
Weinstein [12, 13] formally devised the concept of linear product approxi­
mation. Brown, M. Henry, J. Henry, and Weinstein [2,3,6,8] then
considered nonlinear product approximation. These papers discuss existence
and computations. The authors of the present paper established a continuity
theorem and a Lipschitz theorem for the linear product approximation
operator [7]. In this paper, similar theorems are established for the more
complex setting of rational product approximation.
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2. CONTINUITY OF f!Jl
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In this section, we establish that the operator f!Jl is defined and continuous
on an appropriate subset of C(D). The following univariate results are
needed in this section.

For R(C,') = peA, ')(Q(B, .) E R(n, m), define (as in [10, p. 79]) the
degree of R at C to be

m(C) = 1 -'- max{n + oQ, m + {iP},

= 1 +n,

R =:to 0,

R =" 0,

where OP and i3Q are the degrees of the polynomials P and Q, respectively.
Let

c* = {(A; B) E C: an =1= 0 or bm =1= O}

and define

R* = {R(C, .) E R(n, m): C E C*}.

It can be shown that R* is an open subset of R(n, m) (see the proof of
Theorem 7-1 of Rice [11, p. 5]).

For fE C(l), let Cf = (A(j), B(j)) E C be such that R(Cf , .) is the best
uniform approximation toffrom R(n, m) on I. If Cf E C*, thenfis said to be
normal.

The following theorem, due to Brown and Henry [2], and a series oflemmas
precede the principal theorem of this section.

THEOREM 1. If FE C(D) and Fy is normal for all Y E J, then CF(Y) is
continuous on J.

The next lemma asserts that the collection of functions FE C(D) satisfying
the hypotheses of Theorem I is open.

LEMMA 1. Suppose FE C(D) and Fy is normal for all Y E J. Then there is a
1) = 1)(F) > 0 such that G E C(D) and II G - PID < 1) ensures that G'I is
normal for every y E J.

Proof Assume this is not the case. Then there is a sequence {Gh} in C(D)
where II GIc - F liD -> 0 and where for each k there is a Ylc EJ for which G~

k

is not normal. Since J is compact we may assume Y7c --+ Y* EJ. The triangle
inequality then implies that II G~k - Fy * III --+ O. Then by the continuity of
the best univariate rational approximation operator R(CGk(Y"),')--+
R(CF(y*), -). Since R(CF(y*), -) E R* and R* is an open subset of R(n, m),
eventually R(CGk(Ylc)' .) E R*, a contradiction.
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For the remainder of this section we assume that F E C(D) and F y is normal
for all Y E J. Define

p(y) = II Fy - R(CF(y), ')111,

It follows from the continuity of the best univariate rational approximation
operator that p(y) is continuous on J. For C = (A; B) and C = (lI; .8)
elements of En+m+l , define

LEMMA 2. Given E > 0 there is a 0 = o(F, E) > 0 such that if C(y) =
(A(y); B(y)) = (ao(y), ..., an(y); b1(y), ... , bm(y)) E C for each y E J and

II Fy - R(C(y), ')111 ~ p(y) + 0

for all y E J, then er(CF(y), C(y)) < E for all y E J.

Proof Assume otherwise. Then there is a sequence {Ck(Y)}~l' Ck(y) =
(Ak(y); Bk(y)) = (aok(y), ... , ank(y); b1k(y), .." bmk(y)), where Ck(y) E C for
all y E J, such that

II Fy - R(Ck(y), ')111 ~ p(y) + lJk

for all y E J, and there is a Yk E J for which

(2.1)

(2.2)

Again we may assume Yk -+ y* E J.
Let pk = P(Ak(Yk), '), '), Qk = Q(Bk(Yk), '), p* = P(AF(y*), -), Q* =

Q(BF(y*), -), Wk = II pk III + II Qk III, and w* = II p* III + II Q* III. Define
Nk = pkJWk' Dk = QkJWk' N* = P*Jw*, and D* = Q*Jw*. Since
II Dk III ~ 1, by appropriate relabeling we may assume Dk -+ D. Similarly,
Nk -+ N, and II N III + II Dill = 1. Let M = II FIID + maxJ I p(y)1 + 1.
From (2.1) we have

Ii NkJDk III = II pkJQk iiI ~ M.

So, INk(x) I ~ M I Dk(X) I for each x E I. Thus

I N(x) I ~ M I D(x)l. (2.3)

This inequality and II N III + II Dill = 1 imply D ;¢; O. Thus, using (2.3),
we may perform appropriate cancellations to obtain an N'/D' E R(n, m) such
that

N(x)/D(x) = N'(x)/D'(x), (2.4)
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where D(x) 7'= O. Thus at all but the finitely many points where 15 vanishes,

\
N'(x) \ \ N(x) \

Fy.(x) - D'(x) = F",(x) - D(x)

~ II F y • - F Yk III + II F Yk - R(Ck(y,), .)'II

+ INh{X) _ ~(x) I
Dk(x) D(x)

I , I N"'(x) N(x) I
~ II Fy • - FYk III -;- p(Yk) + 11k + i Dk(X) - D(x) .

Letting k --+ CD, we get

I - N'(x) I *Fy.(x) - D'(x) ~ p(y ).

By the continuity of F y • - (N'ID'),

IIFy. - (N'ID')III ~ p(y*).

By the uniqueness of best rational approximations,

N'ID' = R(CF(y*), -) = R* = P*IQ* = N*ID*.

These equations, (2.3), and (2.4) imply that N = R*D, where D(x) ~ 0
on I and II N III + II Dill = II N* IIJ + II D* III. Since Fy• is normal, a lemma of
Cheney ([4, p. 165]) implies N = N* and 15 = D*. But Q*(O) = Qk(O) = 1,
Q* = w*D*, and Qk = WkD1, imply that D*(O) = ljw* and Dk(O) = Ijw lc •

Since Dk(O) --+ D*(O), Wk --+ w*. Thus pk --+ p* and Qk --+ Q*. As a
consequence, a(CF(y*), Ck(Yk)) --+ O. But (2.2) and the continuity of CFO
then imply a(CF(y*), CF(y*)) ~ E, which is false.

LEMMA 3. Given E > 0, there is a 8 = 8(F, E) > 0 such that whene~'er

G E C(D) and II G - Fllv < 8, a(CG(y), CF(y)) < E for all Y E J.

Proof Denote f3(y) = !I Gy - R(CG(y), ')I!J' As in the proof of
Theorem I of [7], it can be shown that I f3(y) - p(y)1 ~ II G - Fllv .

Let E > 0 be given. From Lemma 2, select 8 > 0 such that G E C(D) and
11 Fy - R(Cc(y), -)1\/ ~ p(y) + 1) for all y E J implies a(CF(y), CG(Y)) < E

for all yEO J. Suppose II G - F liD < 8/2. Then for any yEO J, f3(y) - p(y) <
8/2 and

il Fy - R(CG(y), ')I',I ~ II F - GliD + Ii Gy - R(CGU'), ')111

~ 8/2 + f3(y)

~ p(y) + 8.

Thus a(CG(y), CF(y)) < E for all y EO J, completing the proof.



140 HENRY AND SCHMIDT

We now fix positive integers ro ,... , r n , Sl , ... , Sm' Since Q(BFCy)' x) > 0
on I for each y E J and BF(Y) is continuous on J, Sl , ... , Sm can be chosen large
enough that

m

1+ L Tsi/(y)xJ > 0
j~l

on D, where T s b/ is the best approximation to b/ on J by polynomials of
;

degree less than or equal to Sj ; see (1.2). Let

T = min [I + I: Ts,b/(y) X J
] •

D j=l

LEMMA 4. There is a () > 0 such that G E C(D) andll G - FIID < () ensures
that

m

I + L Ts,bjG(y) x j
~ T/2

J~l

on D.

Proof By the continuity of each T s , there is a y > 0 such that
II b/ - blllJ < y implies that II Ts,b/ - TsjblllJ < T/2m. Pick () > 0, via
Lemma 3, so that G E C(D) and II G - FIID < () implies that II b/ - b/ IIJ < y,
j = I, ... , m. For such G,

m m 1n

I + L Ts,bjG(y) x j
~ I + L Ts,b/(y) x j - L II Ts}b J G - Ts;b/IIJ

j~l j~l J~l

~ T - T/2

= T/2.

Remark. If we view the domain of !?l defined in (1.2) to be the set of all
functions F E C(D) for which Fy is normal for all y E J and the denominator of
(1.2) does not vanish on D, then Lemmas I and 4 imply that the domain of !?l
is an open subset of C(D).

We are now in a position to prove that the rational product approximation
operator f?Jl is a continuous map from an appropriate open subset of C(D) into
a subclass of rational functions contained in C(D).

THEOREM 2. For FE C(D) let Fy be normal for each y E J. Then !?l is
continuous at F.

Proof In view of the above remark !?l is defined in a neighborhood of F.
Let {Gk}~~l C C(D), and suppose Gk -+ F. We may assume without loss of
generality that !?lGk is defined. By Lemma 3, CGk(Y) -+ CF(y) uniformly on J.
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By the continuity of the best polynomial approximation operators Tr a~k ~
k 'Tr a,F and Ts b~ ~ Ts b/ uniformly on J. Hence, ) ,

n n

L Trpt(y) x' ~ L Trp/(y) Xi
i=O i=O

and
m In

1 + I Tsg/(y) Xi ~ 1 , L Ts)b,F( y) x j

j~l J~l

uniformly on D. Moreover, by Lemma 4,

m

1 + '" Ts.bG'(y) xJ ~ T/2L, ,J
j~l

for sufficiently large k. Hence PltGk --+ fJllF uniformly on D. That is, fJll is
continuous at F.

We conclude this section by stating two theorems. The first is a uniform
Lipschitz theorem for univariate rational approximation and the second
asserts that the rational product approximation operator PIt satisfies a local
Lipschitz condition for certain functions FE C(D).

THEOREM 3. Suppose r C C(l) is compact,! is normalfor all fEr, and that
r n R(n, m) = 0. Then there exists a Ar > 0 such that

II R(Cf , .) - R(Cy , ')iI1 ~ Ar U - g [iI

for all fEr and g E C(I).

Theorem 3 is a rational counterpart to similar results for linear univariate
approximation (see [1,5, 7]), and is the main ingredient needed to establish
the next theorem. Although more complex, the proof of this last theorem is
similar to that of Theorem 4 in [7], and hence is omitted.

THEOREM 4. Suppose that FE C(D), Fy is normal for each y E J, and
F y rf R(n, m) for each y E J. Then there are constants bF > 0 and AF > 0
such that if G E C(D) and Ii G - F liD < bF, then

Ii PltG - PltFIID ~ AF II G - FIID'

3. CONCLUSIONS

The results of this paper establish that the rational product approximation
operator is defined on an appropriate open subset of C(D) and is continuous
on this subset, and if F satisfies an additional requirement 2Jl satisfies a local
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Lipschitz condition at F. Results of this type are not possible in the usual
setting of multivariate rational approximation (surface approximation).

Although sharp error estimates for rational product approximation have
not been established to date, J, Henry [6] has shown in fairly general circum­
stances that rational product approximation is competitive computationally
with other known techniques (cf. [9]) for computing rational approximations
to multivariate functions. Thus it would appear that rational product
approximation has the advantage of a theory paralleling the classical
univariate theory and yet remains, at least in certain circumstances, compu­
tationally competitive with surface rational approximation. More research
is needed in this direction.
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